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Abstract
The main purpose of this paper is to provide some sufficient conditions for
a system of differential equations to have local first integrals in a certain
neighbourhood of a singularity. Our results generalize those given in Kwek
et al (2003 Z. Angew. Math. Phys. 54 26) and Li et al (2003 Z. Angew. Math.
Phys. 54 235).
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1. Introduction and statement of the main results

Investigation of first integrals for systems of differential equations is a classical and vigorous
work in the fields of both mathematics and physics. There is much research related to
the integrability, partial integrability and nonintegrablity of differential systems (see, for
instance, [3, 4, 6–19]). In those papers, combining the algebraic geometry, algebraic topology,
differentiable manifold and singular analysis the authors developed many methods, such as
Painlevé analysis, Colemmen embedding, Ziglin theory and so on, to solve some kinds of
integrability problems.

We consider the following autonomous differential systems:

ẋ = F(x) x = (x1, . . . , xn) ∈ C
n (1)

where F is a vector-valued analytic function of dimension n satisfying F(0) = 0, i.e. 0 is a
singularity of system (1), the dot denotes the derivative of x with respect to the time variable t.
As usual, C is the field of complex numbers. If F(x) is a vector-valued formal series, system
(1) is called a formal system. Generally, system (1) can be written as

ẋ = Ax + f(x) x = (x1, . . . , xn) ∈ C
n (2)

where A is the Jacobian matrix DF(0) of the vector field F(x) at x = 0 and f(x) = O(‖x‖2).
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Poincaré [16] in 1891 obtained that if A is diagonal and its eigenvalues do not satisfy any
resonant conditions, then system (2) does not have analytic first integrals in a neighbourhood
of 0. In 1996 Furta [8] provided an elementary proof of this result. Recently, Kwek et al [13]
generalized this result to the case that system (2) has m (m < n) functionally independent
analytic first integrals, and that A is diagonalizable and its eigenvalues satisfy exactly m
linearly independent resonant relations. Li et al [14] extended the Poincaré result to the case
that an eigenvalue of the matrix A is zero and the other eigenvalues are non-resonant. In this
paper we will generalize these results.

Let U ⊂ C
n be an open connected subset. A non-constant analytic function H : U → C

is called an analytic first integral of system (1) in U if and only if along every solution curve〈
∂H

∂x
, F(x)

〉
≡ 0 i.e.

n∑
i=1

Fi(x)
∂H

∂xi

≡ 0 in U (3)

where 〈·, ·〉 denotes the Euclidean inner product of vectors in C
n. If H(x) is a formal series in

x and satisfies (3), then H(x) is called a formal first integral of system (1) in a neighbourhood
of the singularity x = 0. Obviously, if a formal first integral is convergent, it is an analytic
first integral. In what follows, we require, without loss of generality, that all mentioned
first integrals do not have constant terms. We say that first integrals of system (1) in U are
independent if the rank of their Jacobian matrix in U is equal to the number of the first integrals.

Let λ1, . . . , λn be the eigenvalues of the matrix A. We say that the n eigenvalues satisfy
a resonant condition if there exist s ∈ {1, . . . , n} and k1, . . . , kn ∈ Z

+ = N ∪ {0} with∑n
i=1 ki > 1 such that λs = ∑n

i=1 kiλi , where N denotes the set of natural numbers. Set

G =
{

(k1, . . . , kn);
n∑

i=1

kiλi = 0, ki ∈ Z
+, i = 1, . . . , n

}

G′ =
{

(k2, . . . , kn);
n∑

i=2

kiλi = 0, ki ∈ Z
+, i = 2, . . . , n

}
.

We say that λ1, . . . , λn satisfy a resonant relation if
∑n

i=1 kiλi = 0 with ki ∈ Z
+ and∑n

i=1 ki � 1.
Our first result is the following:

Theorem 1. Assume that system (2) is analytic and has m (m < n) nontrivial locally analytic
first integrals �1(x), . . . ,�m(x) in a neighbourhood of the singularity x = 0. If the m first
integrals are independent and the linear space generated from G has dimension m, then any
nontrivial analytic first integral of system (2) is an analytic function in �1(x), . . . ,�m(x).

We note that if m = n − 1, system (2) is completely integrable in a neighbourhood of
x = 0. Consequently, all the solution curves are given by {�1(x) = c1}∩ · · ·∩ {�m(x) = cm},
where c1, . . . , cm are suitable constants.

We remark that this result generalizes theorem A of [13] because we do not need the
condition that A is diagonalizable, which is required in theorem A of [13]. In addition, our
proof is much simpler than that given in [13]. We note that theorem 1 is also correct if we
change analytic in theorem 1 into formal.

The following simple example provides an application of theorem 1:

Example 1. Consider the following system:

ẋ = 0 ẏ = 0 ż = ax + by + cz + f (x, y, z) (4)
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where f is an analytic function and f = O(‖(x, y, z)‖2). Obviously, H1 = x and H2 = y

are two analytic first integrals of the last system, and they are independent. We know that the
eigenvalues of the linear part of the system are λ1 = 0, λ2 = 0 and λ3 = c. If c �= 0, the space
of solutions (k1, k2, k3) of the linear equation k1λ1 + k2λ2 + k3λ3 = 0 has dimension 2. It is
easy to check that any analytic first integral of (4) is an analytic function in H1 and H2, i.e. x
and y.

This example shows that the conditions of theorem 1 are sufficient, but not necessary.
Our next result is an extension of theorem 1 in [14].

Theorem 2. Assume that system (2) is analytic and has m (m < n−1) nontrivial independent
analytic first integrals �1(x), . . . ,�m(x) in a neighbourhood of the singularity x = 0, and
that λ1 is a zero eigenvalue and the linear space generated by G′ has dimension m. If
the eigenspace associated with λ1 is tangent to the (n − m)-dimensional surface formed by
S = {�1(x) = 0} ∩ · · · ∩ {�m(x) = 0}, then the following statements hold:

(a) For m < n − 2, system (2) has a formal first integral in a neighbourhood of x = 0 which
is a formal series of the form

H(x) =
∞∑

|s|=1

hs(x)�
s1
1 (x) . . .�sm

m (x) (5)

with hs(x) not all constants for s = (s1, . . . , sm) ∈ (N+)m and |s| = s1 + · · · + sm, if and
only if the singularities of system (2) form a surface which is transverse to S and passes
through the origin x = 0.

(b) For m = n − 2, system (2) has an analytic first integral in a neighbourhood of x = 0
which is an analytic function of form (5) with hs(x) not all constants for s ∈ (N+)m, if and
only if the singularities of system (2) form a surface which is transverse to S and passes
through the origin x = 0.

The following example provides an application of the last theorem:

Example 2. Consider the following analytic system:

ẋ = yz − xz + x3 − x2y ẏ = 0 ż = z − x2. (6)

The eigenvalues of the system at the origin are λ1 = 0, λ2 = 0 and λ3 = 1. The space of
solutions (k2, k3) of the linear equation k2λ2 + k3λ3 = 0 has dimension 1. The eigenspace
corresponding to λ1 is tangent to the plane y = 0. The parabolic cylinder z = x2 is full of the
singularities of system (6), and it is transverse to the invariant plane y = 0. Consequently, it
follows from theorem 2 that the system has an analytic first integral in a neighbourhood of the
singularity 0. In fact, we also can get the result from the fact that system (6) has the same first
integral as that of the following system:

ẋ = y − x ẏ = 0 ż = 1.

The latter is regular at the origin.

Our following result is an extension of theorem B in [13]. System (1) is said to be
quasi-homogeneous of degree l with exponents s1, . . . , sn ∈ Z\{0} and l ∈ N\{1}, if for any
ρ ∈ R

+ and x ∈ C
n we have that ρE−SF(x) = (ρ1−s1F1, . . . , ρ

1−snFn) is quasi-homogeneous
of degree l, i.e.

Fi(ρ
s1x1, ρ

s2x2, . . . , ρ
snxn) = ρsi+l−1Fi(x1, x2, . . . , xn) i = 1, 2, . . . , n (7)
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where ρE−S = diag(ρ1−s1 , . . . , ρ1−sn ), E the unit matrix and S = diag(s1, . . . , sn). We call
si + l − 1 the weight degree of Fi , and (s1, . . . , sn) the weight exponents. System (1) is called
semi-quasi-homogeneous of degree l with the weight exponents (s1, . . . , sn) if

F(x) = Fl(x) + F̃(x) (8)

with ρE−SFl the vector-valued quasi-homogeneous polynomial of degree l and ρE−SF̃(x) the
sum of vector-valued quasi-homogeneouspolynomials of degree all larger than l or all less than
l. In the former (respectively, latter), system (1) is called positively (respectively, negatively)
semi-quasi-homogeneous. Fl(x) is called the first quasi-homogeneous term of F(x) associated
with the weight exponents (s1, . . . , sn). Let H be an analytic or a formal first integral of system
(1) with F being of type (8) associated with the weight exponents (s1, . . . , sn). According to
this weight exponent we can rewrite H as H = Hm + H̃ , where Hm is the quasi-homogeneous
component of H with weight degree m, and H̃ is the summation of quasi-homogeneous
polynomials of weight degree all larger than m or all less than m depending on system (1)
positively or negatively. Then the first quasi-homogeneous term Hm of H is a first integral of
ẋ = Fl(x). Every non-zero solution c of the algebraic system

Fl(c) + Wc = 0 (9)

is called a balance associated with system (1) with F being of form (8), where W = S/(l − 1).
The matrix K = DFl (c) + W is the so-called Kowalevskaya matrix, where DFl (c) is the
Jacobian matrix of Fl at x = c. We call the eigenvalues of K the Kowalevskaya exponents.

Theorem 3. Assume that system (1) is semi-quasi-homogeneous of degree l associated with
the weight exponents (s1, . . . , sn) having F being of type (8), and that it has m (m < n − 1)

nontrivial analytic first integrals �1(x), . . . ,�m(x) in a neighbourhood of the singularity
x = 0. Denote by �l

1(x), . . . ,�l
m(x) the first quasi-homogeneous terms of �1(x), . . . ,�m(x)

respectively. Moreover, we suppose that the following conditions hold:

(i) There exists a balance c such that the corresponding Kowalevskaya exponents λ1, . . . , λn

satisfy the conditions: λ1 = 0, and the set G′ of the vectors (k2, . . . , kn) satisfying the
conditions

n∑
i=2

kiλi = 0
n∑

i=2

ki �= 0 and ki ∈ Z
+ i = 2, . . . , n

has the rank m.
(ii) The eigenspace corresponding to λ1 is tangent to the manifold given by S = {

�l
1(x) = 0

}
∩ . . . ∩ {�l

m(x) = 0
}
.

(iii) �l
1(x), . . . ,�l

m(x) are independent at the balance c.

Then if the balance c is an isolated solution of (9), any first integral (analytic or formal series)
of system (1) in a neighbourhood of the singularity 0 is an analytic function or a formal series
in �1(x), . . . ,�m(x).

This paper is organized as follows. In section 2 we recall some elementary tools for
proving our results. In sections 3 and 4 we prove theorems 1 and 2, respectively. The proof of
theorem 3 is given in section 5. A conclusion is stated in the last section

2. Elementary tools

In the proof of our main results, we need the following lemma (for a proof, see [14]):
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Lemma 4. Let A be an n × n matrix, and let λ1, λ2, . . . , λn be its eigenvalues. Let �k be the
linear space formed by the homogeneous polynomials of degree k with k � 1 in C[x1, . . . , xn],
the ring of complex polynomials in the variables x = (x1, x2, . . . , xn). We define a linear
operator from �k into itself given by

L(h)(x) =
〈
∂h

∂x
, Ax

〉
for h ∈ �k. Then the set of eigenvalues of L is � = {∑n

i=1 kiλi, ki ∈ Z+,
∑n

i=1 ki = k
}
.

The following classical theorem will be used in the proof of theorem 2 (see for instance,
[1, 2, 5]):

Poincaré–Dulac theorem. If F(x) = Ax + · · · is a formal series and A is a Jordan normal
matrix, then system (1) can be reduced to the canonical form

ẏ = Ay + w(y) (10)

by means of a formal change of variables x = y + · · ·, where w(y) = (w1(y), . . . , wn(y)) and
all monomials ym = y

m1
1 , . . . , ymn

n in the series wi(y) for all i are resonant in the sense that
λi = 〈m,λ〉 with |m| � 2, where λ = (λ1, . . . , λn) are eigenvalues of A,m = (m1, . . . ,mn)

and |m| = ∑n
i=1 mi .

3. Proof of theorem 1

Since �1(x), . . . ,�n(x) are independent, we can take the change of variables

yi = �i(x1, . . . , xn) i = 1, . . . ,mym+1
...

yn

 = Mx

with M an (n − m) × n matrix such that the Jacobian matrix of the transformation is non-zero
at x = 0. Then under this transformation, system (2) becomes

ẏm = 0 ẏn−m = By + g(y) (11)

where ym = (y1, . . . , ym), yn−m = (ym+1, . . . , yn), y = (ym, yn−m), B is an (n − m) × n

matrix, and g(y) an vector-valued analytic function in y with g(y) = O(‖y‖2). From the
assumption of the theorem, it follows that the matrix B has an n − m square submatrix such
that its eigenvalues do not satisfy any resonant relations. Hence, we can take an invertible
linear transformation such that (11) has the following form:

ẏm = 0 ẏn−m = Byn−m + g(y) (12)

where ym = (y1, . . . , ym), yn−m = (ym+1, . . . , yn), B is an n − m square matrix and
g(y) = O(‖y‖2). Now the n − m eigenvalues of B do not satisfy any resonant relations.

From the construction of system (12) we know that system (2) has an analytic first integral
in �1, . . . ,�m if and only if system (12) has an analytic first integral in y1, . . . , ym. So in
what follows, we will give the proof for system (12).

Assume that H(y) is an analytic first integral of system (12) in a neighbourhood of y = 0.
Without loss of generality we can write H(y) in the following form:

H(y) =
∞∑

|s|=0

as(yn−m)ys
m (13)



12248 X Zhang

where as(yn−m) are analytic functions in yn−m, ys
m = y

s1
1 . . . ysm

m , si ∈ Z
+ and |s| =

s1 + · · · + sm. From the definition of first integrals we get that〈
∂H(y)

∂yn−m

, Byn−m + g(y)

〉
≡ 0.

Comparing the terms with y0
m gives〈

∂a0(yn−m)

∂yn−m

, Byn−m

〉
≡ 0.

Generally, we can set a0(yn−m) = c0 + ck(yn−m)+ o(yn−m), where ck(yn−m) is a homogeneous
polynomial of degree k in yn−m, and o(yn−m) denotes the summation of terms in yn−m with
degree larger than k. Hence, we have

L2[ck](yn−m) =
〈
∂ck(yn−m)

∂yn−m

, Byn−m

〉
≡ 0.

Since the eigenvalues of B do not satisfy any resonant relations, it follows from lemma 4
that the linear operator L2 is invertible. Therefore, we have ck(yn−m) = 0. This means that
a0(yn−m) is a constant.

By induction we can prove that all the as(yn−m) in (13) are constants. So, H(y) depends
on ym only. Consequently, if system (2) has an analytic first integral, it must be an analytic
function in �1, . . . ,�m. This proves the theorem.

4. Proof of theorem 2

We first prove statement (a). Since λ1 is a zero eigenvalue, there exists an invertible matrix M
such that

A∗ = M−1AM =
(

0 0n−1

0T
n−1 B

)
is a Jordan normal form of the matrix A, where 0n−1 is a line zero vector of dimension n−1, T
denotes the transpose of a matrix, and B is an n − 1 square matrix. Applying the change of
variables y = M−1x to system (2) we get the following equivalent system:

ẏ = A∗y + q(y). (14)

Consequently, system (14) has the first integrals �∗
1(y) = �1(My), . . . ,�∗

m(y) = �m(My).

We make the following analytic change of variables: y1
...

yn−m

 = M′y yi = �∗
i−n+m(y) i = n − m + 1, . . . , n

with M′ an (n−m)×n matrix, such that the Jacobian matrix of the transformation is invertible
at y = 0, and that system (14) has the following form:

ẏ1 =
(

0 0n−1

0T
n−1 B

)
y1 + q(y) ẏ2 = 0 (15)

where y1 = (y1, . . . , yn−m), y2 = (yn−m+1, . . . , yn), y = (y1, y2), B is an n − m − 1 square
matrix and q(y) a vector-valued function of dimension n − m with q(y) = O(‖y‖2). Let
µ2, . . . , µn−m be the n − m − 1 eigenvalues of the matrix B. Since we assume that the
n − 1 eigenvalues λ2, . . . , λn of A satisfy exactly m resonant relations, it follows from the
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transformation, changing (2) into (15), that the n − m − 1 eigenvalues µ2, . . . , µn−m do not
satisfy any resonant relations.

We note that system (1) has a Cr first integral in a neighbourhood of the singularity x = 0
if and only if system (15) has a Cr first integral in a neighbourhood of the singularity y = 0.
So, in the following we prove our results for system (15).

The Poincaré–Dulac theorem implies that there exists a formal series y = z + · · · such
that system (15) can be reduced to the following canonical form:

ż1 = h1(z1, z2, z3) ż2 = Bz2 + h2(z1, z2, z3) ż3 = 0 (16)

where z = (z1, z2, z3), z2 = (z2, . . . , zn−m), z3 = (zn−m+1, . . . , zn) = y2 and h2 =
(h2, . . . , hn−m) are vector-valued functions of dimension n − m − 1. The series h1 and
h2 start with the terms of degree at least 2. All monomials in the series h1 and h2 are resonant
in z1 and z2 with coefficients of functions in z3.

From the definition of resonant monomials z
k1
1 , . . . , z

kn−m

n−m and the Poincaré–Dulac
theorem, we obtain that 0 = λ1 = 〈k, λ〉 = ∑n−m

i=2 kiµi , where k = (k1, . . . , kn−m) and
λ = (λ1, µ2, . . . , µn−m). This condition is equivalent to k2 = · · · = kn−m = 0, because
µ2, . . . , µn−m do not satisfy any resonant relations. So h1(z1, z2, z3) = h1(z1, z3), in
which the term of the lowest order has degree at least 2. Similarly, we can prove that
h2(z1, 0n−m−1, z3) ≡ 0.

We first prove the ‘only if’ part. It is easy to prove that system (15) has a formal first
integral in the neighbourhood of y = 0 if and only if system (16) has a formal first integral in
a neighbourhood of z = 0. By the assumption we can assume that system (16) has a formal
first integral H(z1, z2, z3) and that H has the form

H(z1, z2, z3) = H1(z1, z2) + H2(z1, z2, z3) H1(z1, z2) =
∞∑
i=0

ai(z2)z
i
1

where ai(z2) are formal series in z2 and H2(z1, z2, 03) ≡ 0. Let

h2(z1, z2, z3) =
∞∑
i=0

bi (z2, z3)z
i
1

where bi(z2, z3) are vector-valued formal series in z2 of dimension n−m−1 with coefficients
of functions in z3, and b0(z2, z3) has degree at least 2 in z2. From the definition of first integrals
we obtain that( ∞∑

i=1

iai(z2)z
i−1
1 +

∂H2

∂z1

)
h1(z1, z3) +

〈 ∞∑
i=0

∂ai(z2)

∂z2
zi

1 +
∂H2

∂z2
, Bz2 +

∞∑
i=0

bi (z2, z3)z
i
1

〉
≡ 0.

(17)

On the (n − m)-dimensional plane z3 = 0, equating the constant terms in z1 yields〈
∂a0(z2)

∂z2
, Bz2 + b0(z2)

〉
≡ 0.

Let a0(z2) = c0 +ck(z2)+O(k+1), where c0 is a constant, ck(z2) is a homogeneous polynomial
of degree k in z2 with k � 1, and O(k + 1) denotes the summation of terms in z2 with degree
larger than k. Substituting a0(z2) into the above equality, we get 〈∂ck(z2)/∂z2, Bz2〉 = 0,
because the lowest degree of the terms in b0(z2) is larger than 1. So, from lemma 4 and working
in a similar way to the proof of theorem 1 we can prove that ck(z2) = 0. Consequently, a0(z2)

is a constant.
By induction we can prove that all ai(z2) are constants for i = 1, 2, . . .. Hence,

H1(z1, z2) = H1(z1). It follows from (17) that either H1(z1, z2) ≡ 0 or h1(z1, 03) ≡ 0.



12250 X Zhang

If h1(z1, 03) �≡ 0 then H(z1, z2, 03) = H1(z1, z2) ≡ 0. We have H = H2(z1, z2, z3). Set
H2(z1, z2, z3) = ∑∞

|s|=1 gs(z1, z2)zs
3, where zs

3 = z
s1
n−m+1 . . . zsm

n and |s| = s1 + · · · + sm. Since
the first integral H = H2 satisfies

∂H2

∂z1
h1(z1, z3) +

〈
∂H2

∂z2
, Bz2 + h2(z1, z2, z3)

〉
≡ 0

h1 and h2 have the lowest degrees larger than 1, and h1(z1, 03) �≡ 0, by induction and working
in similar way to the previous proof we can get that all gs(z1, z2) = constant. This means
that the first integral H = H2(z1, z2, z3) of system (16) is a formal series in z3 only in a
neighbourhood of the singularity 0. It is in contradiction with the assumption.

Now, we suppose that h1(z1, z2, 03) = h1(z1, 03) ≡ 0. By selecting a sufficiently higher
cut of the formal series transformation in the Poincaré–Dulac theorem, and working in a similar
way to the proof of lemma 6 in [14], we can prove that the singularity x = 0 of system (2) on
the (n − m)-dimensional analytic manifold S is not isolated if and only if h1(z1, z2, 03) ≡ 0.
So, we have proved the ‘only if’ part of statement (a).

Using the statement of the last paragraph, we can get also the proof of the ‘if’ part of
statement (a).

Proof of statement (b). From statement (a) it follows easily that the ‘only if’ part holds. We
now prove the ‘if’ part.

Working in a similar way to the proof of statement (a), we only need to consider system
(15). The condition n − m = 2 means that the matrix B = µ2. Since the singularity y = 0
of system (15) on the two-dimensional plane (y1, y2) is not isolated, there exists a sufficiently
small neighbourhood U of 0 such that the equation µ2y2 + q2(y) = 0 has a unique solution
y2 = G(y1, y2) and q1(y1,G(y1, 02)) ≡ 0.

Applying the change of variables

z1 = y1 z2 = y2 − G(y1, y2) z3 = y2 (18)

to system (15), we get the following system:

ż1 = p1(z1, z2, z3)z2 + f1(z1, z2, z3) ż2 = p2(z1, z2, z3)z2 + f2(z1, z2, z3) ż3 = 0

(19)

with p2(0, 0, 03) = µ2 �= 0, fi(z1, z2, 03) = 0, i = 1, 2. Obviously, p1, p2, f1 and f2 are
analytic in a neighbourhood of the origin. Moreover, on the plane z3 = 0 system (19) and the
system

ż1 = p1(z1, z2, z3) ż2 = p2(z1, z2, z3) ż3 = 0 (20)

have the same first integrals. Since system (20) is regular at the origin of the plane z3 = 0,
by the box flow theorem it has an analytic first integral on the plane z3 = 0 in a sufficiently
small neighbourhood of the origin. Hence, system (19) has also an analytic first integral on
the plane z3 = 0 in the corresponding neighbourhood of (0, 0, 03).

From the assumption of the theorem, i.e. the surface formed by the singularities of
system (2) is transverse to S, and passes through the origin, it follows that the singularities
of (19) form a surface, denoted by S′, transverse to the plane z3 = 03. Hence, there exists a
neighbourhood V of z = 0 such that for each c3 �= 03 with ‖c3‖ sufficiently small, the curve
S′∩{z3 = c3}∩V on the invariant plane {z3 = c3} is formed by the singularities of system (19).
Working in a similar way to the proof of the last paragraph we can prove that system (19) has
an analytic first integral in {z3 = c3} ∩ V . Therefore, by continuity of solutions and Hartog’s
theorem [11] we obtain that system (19) has an analytic first integral in a neighbourhood of
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z = 0, which consists of z3 and at least one of z1 and z2. Since the transformation (18) is an
analytic diffeomorphism, system (15) has an analytic first integral of the form

H ∗ =
∞∑

|s|=1

Cs(y)
(
�∗

1(My)
)s1

. . . (�∗
m(My))sm

with Cs not all constants. This completes the proof of statement (b). We have finished the
proof of the theorem.

5. Proof of theorem 3

Since system (1) is semi-quasi-homogeneous of degree l with exponents s1, . . . , sn having F
of form (8), under the transformation

x −→ ρSx t −→ ρ−(l−1)t ρS = diag(ρs1 , . . . , ρsn) (21)

system (1) becomes

ẋ = Fl(x) + F̃(x, ρ) (22)

where F̃(x, ρ) is a vector-valued formal series with respect to ρ or ρ−1 according that the
system is positively or negatively semi-quasi-homogeneous. We note that if H(x) is a first
integral of system (1), then so is ρkH(x) for k ∈ Z. Using the transformation (21) we can
get a first integral H(ρSx) of system (22). We assume that the first integral H(x) under the
change (21) has the form

H(x, ρ) = Hr(x) + ρHr+1(x) + ρ2Hr+2(x) + · · ·
or

H(x, ρ) = Hr(x) + ρ−1Hr−1(x) + ρ−2Hr−2(x) + · · ·
depending on system (1) is positively or negatively semi-quasi-homogeneous respectively,
where Hj(x) = 0 for j � 0, and Hj(ρ

Sx) = ρjHj(x) with j > 0. We call Hr(x) the first
term of H(x, ρ).

If H(x) is a first integral of system (1), then from the expressions of F and H, and
the definition of first integrals we can obtain that Hr(x) is a polynomial first integral of the
quasi-homogeneous cut of system (22):

ẋ = Fl(x). (23)

Using the change of variable x = t−W(c + u), where c satisfies Fl(c) + W c = 0, we get that

Hr(x) = t−r/(l−1)Hr(c + u) = Hr(u0, u)

where we select u0 = t−1/(l−1) as a new auxiliary variable. System (23) becomes

tu̇ = Ku + Fl(u) Fl(u) = Wc + Fl(c + u) − ∂Fl(c)
∂x

u

where K is the Kovalevskaya matrix associated with the balance c.
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Let τ = log t . Then Hr(u0, u) is a polynomial first integral of the system

u′
0 = − 1

l − 1
u0 u′ = Ku + Fl(u) (24)

where the prime denotes the derivative with respect to τ .
On the other hand, we can prove easily that the eigenvalues of the linear part of system

(24) at u0 = 0 and u = 0 are λ0 = −1/(l − 1), λ1 = 0, λ2, . . . , λn. Since −1 is always a
Kowalevskaya exponent, let λ2 = −1. From the assumptions of the theorem we obtain that
the linear algebraic equation in λ2, . . . , λn

−k0 + (l − 1)

n∑
i=2

kiλi = (k0 + (l − 1)k2)λ2 + (l − 1)

n∑
i=3

kiλi = 0

with ki ∈ Z
+, k0 + (l − 1)

∑n
i=2 ki �= 0, has m-independent solutions. By the assumption,

equation Ku + Fl (u) = Fl(c + u)+W(c + u) = 0 has the isolated root u = 0, so the origin as
the singularity of system (24) is isolated. Hence, it follows from theorem 2 that the first integral
Hr(u0, u) of system (24) in a neighbourhood of the origin depends only on �1, . . . ,�m.

It is easy to know that any smooth function in �1, . . . ,�m is also a first integral of
(22). If H(x, ρ) is a first integral of system (22), and it depends not only on �1, . . . ,�m,
we can select a first integral �(x, ρ) containing only �1, . . . ,�m of (22) such that the first
quasi-homogeneous term H of H(x, ρ) − �(x, ρ) contains components depending not only
on �i , i = 1, . . . ,m. This is in contradiction with the argument of the last paragraph. This
proves the theorem.

6. Conclusion

In this section we summarize our main results and methods. In theorem 1 we generalize
theorem A given in [13] to the case that the matrix of the linear part of the system at a
singularity can be non-diagonalizable. The main method in our proof is to use the spectrum
of a linear operator on the linear space formed by the homogeneous polynomials of the same
degree.

Our second theorem extends the results given in theorem 1 of [14]. We give a necessary
and sufficient condition for a system with some analytic first integrals to have other first
integrals independent of the given first integrals. In the proof we combine the spectrum of
linear operators and the Poincaré–Dulac normal form.

Our theorem 3 provides an extension of theorem B given in [13]. In our results the
Kowalevskaya exponents independent of the given first integrals can be zero. The proof is to
combine the singular analysis and the methods given in the proof of theorems 1 and 2.
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